Company presentation

Biotech Showcase, San Francisco, 10 January 2017
Per Norlén, CEO
Disclaimer

This presentation regarding Alligator Bioscience AB ("Alligator") and its contents are confidential and may not be reproduced, redistributed or passed on, directly or indirectly, to any other person or published, in whole or in part, by any medium or for any purpose.

This presentation does not constitute or form part of any offer or invitation to purchase or subscribe for, or any offer to underwrite or otherwise acquire any shares in Alligator or any other securities. Neither shall the presentation or any part of it, nor the fact of its distribution or communication, form the basis of, or be relied on in connection with, any contract, commitment or investment decision in relation thereto.

This presentation contains forward-looking statements, which are subject to risks and uncertainties because they relate to expectations, beliefs, projections, future plans and strategies, anticipated events or trends and similar expressions concerning matters that are not historical facts. Such forward-looking statements involve known and unknown risks, uncertainties and other factors, which may cause the actual results, performance or achievements of Alligator or the industry in which it operates, to be materially different than any future results, performance or achievements expressed or implied by such forward-looking statements. Given these risks, uncertainties and other factors, recipients of this presentation are cautioned not to place undue reliance on these forward-looking statements. The forward-looking statements referred to above speak only as at the date of the presentation. Alligator will not undertake any obligation to release publicly any revisions or updates to these forward-looking statements to reflect future events, circumstances, anticipated events, new information or otherwise except as required by law or by any appropriate regulatory authority.

This presentation speaks as of January 2017. The information included in this presentation may be subject to updating, completion, revision and amendment and such information may change materially. No person, including Alligator and its advisors, is under any obligation to update or keep current the information contained in this presentation and any opinions expressed in relation thereto are subject to change without notice. Neither Alligator nor any of its owners, affiliates, advisors or representatives (jointly the "Disclosers") make any guarantee, representation or warranty, express or implied, as to the accuracy, completeness or fairness of the information and opinions contained in this presentation, and no reliance should be placed on such information. None of the Disclosers accept any responsibility or liability whatsoever for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection therewith.

This presentation is subject to Swedish law and any dispute arising in respect of this presentation is subject to the exclusive jurisdiction of the Swedish courts.

By attending this presentation or by accepting any copy of this document, you agree to be bound by the foregoing limitations.
Alligator Bioscience in brief

COMPANY HIGHLIGHTS

- Development of tumor-directed immuno-oncology antibodies to out-license after POC
- Fast growing market for immuno-oncology drugs with estimated US$ +30 billion potential
- Well-positioned development pipeline of innovative immuno-oncology drugs
- Strategic partnership with Janssen worth US$ +695 million
- Solid intellectual property portfolio and state of the art technology platforms
- Highly experienced BoD, management and research team within immuno-oncology

HISTORY OF ASSET GROWTH

- **2015**: ADC-1013 entering clinical phase I and major out-licensing deal
- **2013**: ALLIGATOR-GOLD® mAb library
- **2012**: Focus extended to bispecific antibodies
- **2008**: Focus on immuno-oncology
- **2001**: FIND® and foundation of Alligator

FIND® and foundation of Alligator

Janssen Biotech

2008

2012

2013

2015
Rapid uptake and development within the field of immuno-oncology

Sales of existing immuno-oncology treatments

Market potential for immuno-oncology

Existing drugs showing strong uptake despite a high treatment price and relatively few cancer indications on label

Consensus estimates the I-O market to hold the largest upside potential within the global pharmaceutical market

Source: Bristol-Myers Squibb; Merck & Co; GlobalData, WHO World Cancer Report 2014

Annual global cancer mortality (2012)

Of which melanoma <80,000 deaths

With 8,201,030 global cancer deaths annually, immuno-oncology has significant potential to grow to one of the largest therapy areas

US$ Million

CAGR: 30%

CAGR: 75%

Yervoy® Opdivo® Keytruda®

360 706 960 1,369 2,634 516 2,939 1,133 1,054

Existing drugs showing strong uptake despite a high treatment price and relatively few cancer indications on label

Consensus estimates the I-O market to hold the largest upside potential within the global pharmaceutical market

Source: Bristol-Myers Squibb; Merck & Co; GlobalData, WHO World Cancer Report 2014
Introduction to tumor-directed immuno-oncology

Systemic administration of immunotherapeutic drugs results in general activation of the immune system, which may lead to severe side effects.

Selective activation of tumor-specific immune cells results in a systemic immune-mediated anti-tumor attack with limited toxicity.
Fully integrated technology platforms

ALLIGATOR-GOLD®

ALLIGATOR-GOLD® is a fully human single-chain library with large diversity.

FIND®

The FIND® technology is used to optimize antibodies and other proteins characteristics.

- Increased tumor retention
- Increased affinity
- Improved safety profile
- Decreased antigenicity
- Improved developability

Technology platforms will enable Alligator to continue to develop innovative antibodies for years to come.

Source: Company Information
Extensive collaboration with distinguished immuno-oncologists

Partners and major deliverables

- **Stanford University**
 - Pre-clinical In-vivo proof of concept supporting ADC-1015 and research programs

- **Navarra University**
 - In-vitro and in-vivo characterization of Alligator compounds supporting ADC-1016 and research programs

- **Lund University**
 - DC and T-cell assays used for characterization of ADC-1013
 - Next generation sequencing

- **Uppsala University**
 - In-vivo proof of concept (ADC-1013)
 - Supporting research programs

- **University of Manchester**
 - Characterization of tumor targeting antibodies supporting ADC-1016 and research programs

- **EU/TIMCC**
 - Academic network of 6 leading groups from European Universities
 - To characterize the tumor infiltrating myeloid cell compartment

- **The Royal Institute of Technology**
 - Identification and characterization of novel immune modulating targets

IGNACIO MELERO
MD, PhD, Professor
Expert in pre-clinical and clinical tumor-directed and systemic immunotherapy

THOMAS TÖTTERMAN
MD, PhD, Professor
Pioneer in the field of tumor-directed immunotherapy

PETER L. STERN
PhD, Professor
Expert in tumor targets for cancer immunotherapy

JEFFREY WEBER
MD, PhD, Professor
Expert in clinical immuno-oncology

Alligator will strive to increase the number of collaborations with both universities and small to mid-size biotechs
Well-positioned drug development pipeline

Pipeline of immuno-stimulating mono- and bi-specific antibodies targeting TNFR superfamily

<table>
<thead>
<tr>
<th>RESEARCH</th>
<th>PRE-CLINICAL DEVELOPMENT</th>
<th>PHASE I</th>
<th>PHASE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC-1013* (CD40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATOR-1015 (OX40/CTLA-4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATOR-1016 (TNFR-SF/TAA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TNFR-SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TNFR-SF/ND)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TNFR-SF: Tumor Necrosis Factor Receptor-Superfamily
TAA: Tumor-Associated Antigen
ND: Not Disclosed
*Partnered with Janssen Biotech Inc., developed as JNJ-64457107

All product candidates suitable for combination therapy with other I-O drugs, e.g. anti-PD-1 and anti-PD-L1

Source: Company Information
ADC-1013: CD40 is a key immuno-oncology target

ADC-1013 Mode of Action

ANTIGEN-PRESENTING CELL

![Diagram of antigen-presenting cell](Image)

T CELL

![Diagram of T cell](Image)

Immuno-modulating receptors

ANTIGEN-PRESENTING CELL

- PDL1 or PDL2
- PDL1 or PDL2
- CD80 or CD86
- CD80 or CD86
- B7RP1
- B7-H3
- B7-H4
- HVEM
- MHC class I or II
- CD137L
- OX40L
- CD70
- CD40
- GAL9
- Adenosine

T CELL

- ?
- PD1
- CD28
- CTLA4
- ICOS
- ?
- ?
- BTLA
- KIR
- TCR
- LAG3
- CD137
- OX40
- CD27
- CD40L
- TIM3
- A2aR

CD40 is the only defined receptor that selectively activates the antigen-presenting cell and is a highly promising target for combination with T-cell activating antibodies such as PD-1 and CTLA-4.

Approx. 70 immuno-oncology drugs are currently in clinical development

Extensive focus on first generation targets PD-1 and PD-L1

Four ongoing trials of by commercial companies targeting the CD40 receptor with monospecific agonistic antibodies, including Alligator’s ADC-1013

Selection of antibody based immuno-oncology drugs in clinical development

<table>
<thead>
<tr>
<th>Company</th>
<th>Drug</th>
<th>Indication</th>
<th>Phase</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca (MedImmune)</td>
<td>durvalumab</td>
<td>NSCLC, H&N, bladder</td>
<td>III</td>
<td>PD-L1</td>
</tr>
<tr>
<td>Pfizer & AstraZeneca</td>
<td>tremelimunab</td>
<td>Mesothelioma, NSCLC, bladder</td>
<td>III</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>Pfizer & MerckSerono</td>
<td>avelumab</td>
<td>NSCLC, GI, bladder</td>
<td>III</td>
<td>PD-L1</td>
</tr>
<tr>
<td>Prima Biomed (Immutep)</td>
<td>IMP-321</td>
<td>Breast</td>
<td>III</td>
<td>LA3G</td>
</tr>
<tr>
<td>AstraZeneca (MedImmune)</td>
<td>MEDI-0680</td>
<td>BCL, NHL, melanoma, CRC</td>
<td>II</td>
<td>PD-1</td>
</tr>
<tr>
<td>CureTech</td>
<td>pidilizumab</td>
<td>BCL, NHL, melanoma, CRC</td>
<td>II</td>
<td>PD-1</td>
</tr>
<tr>
<td>Jiangs Hengrui Medicine (Incyte)</td>
<td>INCIR-1210</td>
<td>Solid tumors</td>
<td>II</td>
<td>PD-1</td>
</tr>
<tr>
<td>Novartis</td>
<td>PDR-001</td>
<td>NSCLC, CRC, GI, melanoma</td>
<td>II</td>
<td>PD-1</td>
</tr>
<tr>
<td>Regeneron</td>
<td>REGN2810</td>
<td>Melanoma</td>
<td>II</td>
<td>PD-1</td>
</tr>
<tr>
<td>AgonOr (AstraZeneca)</td>
<td>MEDI-6469</td>
<td>Breast, prostate, lymphoma</td>
<td>II</td>
<td>OX40</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>BMS-96178</td>
<td>Solid tumors</td>
<td>II</td>
<td>OX40</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>urelumab</td>
<td>Solid tumors and lymphoma</td>
<td>II</td>
<td>CD137</td>
</tr>
<tr>
<td>Celldex</td>
<td>varilumab</td>
<td>Solid tumors</td>
<td>II</td>
<td>CD27</td>
</tr>
<tr>
<td>Novartis</td>
<td>LAG-525</td>
<td>Solid tumors</td>
<td>II</td>
<td>LA3G</td>
</tr>
<tr>
<td>Novartis</td>
<td>MBG-453</td>
<td>Cancer</td>
<td>II</td>
<td>TIM-3</td>
</tr>
<tr>
<td>Alligator Bioscience</td>
<td>ADC-1013</td>
<td>Solid tumors</td>
<td>I</td>
<td>CD40</td>
</tr>
<tr>
<td>Apexigen</td>
<td>APX-005M</td>
<td>Lymphoma</td>
<td>I</td>
<td>CD40</td>
</tr>
<tr>
<td>Roche</td>
<td>RG-7876</td>
<td>Solid tumors</td>
<td>I</td>
<td>CD40</td>
</tr>
<tr>
<td>Seattle Genetics</td>
<td>SEA-CD40</td>
<td>Solid tumors</td>
<td>I</td>
<td>CD40</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>BMS-986016</td>
<td>Solid tumors, lymphoma and leukemia</td>
<td>I</td>
<td>LA3G</td>
</tr>
<tr>
<td>Merck</td>
<td>MK-4280</td>
<td>Cancer</td>
<td>I</td>
<td>LA3G</td>
</tr>
<tr>
<td>Novartis (Immutep)</td>
<td>IMP-701</td>
<td>Cancer</td>
<td>I</td>
<td>LA3G</td>
</tr>
<tr>
<td>Pfizer</td>
<td>PFE-1, PF-05082566</td>
<td>Solid tumors and lymphoma</td>
<td>I</td>
<td>CD137</td>
</tr>
<tr>
<td>Agenus and Incyte</td>
<td>INCAGIN1876</td>
<td>Solid tumors</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>Amgen</td>
<td>AMG-228</td>
<td>Solid tumors</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>MEDI-1873</td>
<td>Solid tumors</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>BMS-986156</td>
<td>Solid tumors</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>GITR Inc</td>
<td>TRX-518</td>
<td>Solid tumors and melanoma</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>Merck</td>
<td>MK-4166</td>
<td>Solid tumors</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>Merck</td>
<td>MK-1248</td>
<td>Cancer</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>Novartis</td>
<td>GWN-223</td>
<td>Solid tumors and lymphoma</td>
<td>I</td>
<td>GITR</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>MEDI-0562</td>
<td>Cancer</td>
<td>I</td>
<td>OX40</td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>GSK-3174998</td>
<td>Cancer</td>
<td>I</td>
<td>OX40</td>
</tr>
<tr>
<td>Pfizer</td>
<td>PF-04518600</td>
<td>Cancer</td>
<td>I</td>
<td>OX40</td>
</tr>
<tr>
<td>Roche</td>
<td>RG7888</td>
<td>Solid tumors</td>
<td>I</td>
<td>OX40</td>
</tr>
<tr>
<td>Merck</td>
<td>M-7824</td>
<td>Solid tumors</td>
<td>I</td>
<td>PD-L1 and TGF-β</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>MDX-1105</td>
<td>Solid tumors</td>
<td>I</td>
<td>PD-L1</td>
</tr>
<tr>
<td>BelGene</td>
<td>BGB-A317</td>
<td>Cancer</td>
<td>I</td>
<td>PD-1</td>
</tr>
<tr>
<td>GlaxoSmithKline (Amplimmune)</td>
<td>AMP-224</td>
<td>Cancer</td>
<td>I</td>
<td>PD-1</td>
</tr>
<tr>
<td>Regeneron</td>
<td>REGN-2810</td>
<td>Solid tumors, BCL</td>
<td>I</td>
<td>PD-1</td>
</tr>
<tr>
<td>DaiichiSankyo</td>
<td>DS-5573</td>
<td>Solid tumors</td>
<td>I</td>
<td>B7-H3</td>
</tr>
<tr>
<td>Macrogenics</td>
<td>Enoblituzumab</td>
<td>Solid tumors</td>
<td>I</td>
<td>B7-H3</td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>GSK-3559609</td>
<td>Cancer</td>
<td>I</td>
<td>ICOS</td>
</tr>
<tr>
<td>Jounce Therapeutics</td>
<td>JTX-2011</td>
<td>Cancer</td>
<td>I</td>
<td>ICOS</td>
</tr>
<tr>
<td>Tesaro / Anaptys</td>
<td>TSR-022</td>
<td>Cancer</td>
<td>I</td>
<td>TIM-3</td>
</tr>
</tbody>
</table>
ADC-1013: Anti-tumor effect in lymphoma model

Results from single tumor model in A20 lymphoma

ADC-1013 induces significant anti-tumor effects in a hCD40 negative lymphoma model (A20)

ADC-1013: Long term immunity in bladder model

Results from rechallenge in a twin-tumor model

Mice previously treated with ADC-1013 exhibit tumor immunity to identified tumor type

Source: Mangsbo et al 2015, Clinical Cancer Research
ADC-1013: Partnership with Janssen validating Alligator’s model

Partnership details for ADC-1013

<table>
<thead>
<tr>
<th>Description of agreement</th>
<th>Royalty / Milestone potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Exclusive world-wide license to ADC-1013</td>
<td>- Up-front payment plus additional milestones up to a potential total of US$695 million</td>
</tr>
<tr>
<td>- Alligator sponsor for the ongoing Phase I clinical trial</td>
<td>- Tiered high single-digit to low double digit royalties on worldwide net sales upon successful launch</td>
</tr>
<tr>
<td>- Additional phase I study initiated by Janssen</td>
<td></td>
</tr>
<tr>
<td>- All development costs covered by Janssen</td>
<td></td>
</tr>
</tbody>
</table>

Description of ongoing Phase I trial

- 40 patients with advanced solid tumors
- 5 clinical sites in the UK, DK and SE

Description of agreement

- Up-front payment plus additional milestones up to a potential total of US$695 million
- Tiered high single-digit to low double digit royalties on worldwide net sales upon successful launch

Royalty / Milestone potential

- Exclusive world-wide license to ADC-1013
- Alligator sponsor for the ongoing Phase I clinical trial
- Additional phase I study initiated by Janssen
- All development costs covered by Janssen

Dosing & administration

- FiH, first dose April 2015
- Dose escalation

Primary endpoint

- Safety and tolerability

Secondary endpoints

- Pharmacokinetics
- Immunogenicity
- Clinical efficacy

Highly attractive out-licensing terms with Janssen showing commitment through extension of clinical scope to systemic administration

Source: Company Information
ATOR-1015: Biological rationale for dual binding OX40 and CTLA-4

- ACTIVATION OF EFFECCTOR T-CELLS
- SUPPRESSION OF REGULATORY T-CELLS

5 mutations were introduced → Affinity increased 100-fold

Source: Company information
ATOR-1015: Combining OX40 with CTLA-4 (1/3)

OX40 and CTLA-4 surrogate antibodies (30μg of each)

Source: Hebb and Kohrt, American Society of hematology (ASH) 2015
ATOR-1015: Combining OX40 with CTLA-4 (2/3)

CTLA-4 mediated clustering of OX40

- **CTLA-4 mediated clustering**
 - Strong immune activation

- **No clustering**
 - No/low immune activation

- When ATOR-1015 binds to CTLA-4 coated on the surface of a well it induces extensive cross-linking of OX40 on the T-cells resulting in a very strong immune activation

- The activation is superior to the combination of the monospecific αOX40 and αCTLA-4 binders

Synergistic T-eff activation

- **ATOR-1015**
- **Combination of monospecific αOX40 and αCTLA-4**

The effect of the bispecific antibody is superior to the effect of the combination of the monospecific antibodies – the effect is cross-linking dependent

Source: Patent application: 1605450.4, map ATOR-1015
ATOR-1015: Combining OX40 with CTLA-4 (3/3)

ATOR-1015 induces ADCC on CTLA-4/OX40 expressing cells

- When ATOR-1015 binds to cells that express high levels of OX40 and CTLA-4 (e.g. regulatory T-cells) it can induce ADCC
- The ability to induce ADCC is superior to the combination of the monospecific αOX40 and αCTLA-4 binders

Synergistic T-cell depletion

The effect of the bispecific antibody is superior to the effect of the combination of the monospecific antibodies
ATOR-1016: Localizing tumor-directed immunotherapy

Mode of Action

- Dendritic cell
- DC activation
- Activation of T-cells
- Tumor cell killing
- Tumor antigen release

NOTE: ILLUSTRATIVE ANTIBODY STRUCTURE – FINAL STRUCTURE NOT DISCLOSED

Major benefits of localizing immune-activators

- Immune-activators inactive until reaching tumor
- Systemic administration
- Convenient administration with maintained risk/benefit ratio
- Tumor directed immune activation in all tumors
- Potential for higher efficacy

Localizing tumor-directed immunotherapy has substantial potential in cancers with multiple metastases

Source: Company Information
Solid intellectual property portfolio

- More than 50 approved and/or pending patents
- Seven product patent families, including ADC-1013
- Solid IP position for ADC-1013 with patent coverage at least until 2032
- Four technology patent families, including FIND® and ALLIGATOR-GOLD®
- Covering all major markets (US, EU, Japan, BRIC)
Strategy to maximize shareholder value

1. **Advance and broaden pipeline** of agonistic tumor-directed immuno-oncology antibodies

2. **Extend in-house product development** to later-stage clinical phase prior to partnering

3. **Development of next generation technology** for antibody discovery and optimization

4. **Facilitate an attractive research environment** for intellectual human capital
Thank You